# Submersible Level Transmitter

## **User Manual**

## PS Series

ww.yotochn.net







## **Ordering Code**

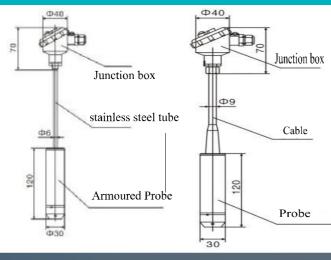
PS — — — Blank: Direct cable S: Shell head M: LED display

Range Description: 0-200m H2O for option

300: 4-20mA 205: 0-5V 215: 1-5V 210: 0-10V

1: M20X1.5 Standard 2: G1/2

PS series Submersible Level Transmitter


Example: PS1300-10mH<sub>2</sub>O

It means thread size M20X1.5 standard, 4-20mA output, range 0-10m water

## Technical Data

| Measuring range         | 0 to 5m H2O 0 to 200m H2O                                               |  |  |
|-------------------------|-------------------------------------------------------------------------|--|--|
| Pressure type           | Gauge pressure, absolute pressure                                       |  |  |
| Accuracy                | 0.5%F.S (including linearity, repeatability and hysterics)              |  |  |
| Long term stability     | ±0.2%F.S. per year                                                      |  |  |
| Output signal           | 4 ~ 20mA (2-wire), 1 ~ 5V (3-wire), 0 ~ 5V (3-wire)                     |  |  |
| Power supply            | 12 ~ 36V DC (24V DC )                                                   |  |  |
| Response time           | 10ms                                                                    |  |  |
| Allowed overpressure    | 2.5 times full scale                                                    |  |  |
| Probe material          | 1Cr18Ni9Ti                                                              |  |  |
| Measuring media         | Liquids that can be compatible with 1Cr18Ni9Ti and 316L stainless steel |  |  |
| Working temperature     | (-40)°C ~ 85°C                                                          |  |  |
| Media temperature       | (-30)°C ~ 60°C                                                          |  |  |
| Compensated temperature | (-10)°C ~ 60°C                                                          |  |  |

#### Wire Connection

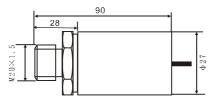


| Electrical connection |          |             |          |             |
|-----------------------|----------|-------------|----------|-------------|
| Pin                   | 2-wire   | Cable       | 3-wire   | Cable       |
| 1                     | power    | Red         | Power    | Red         |
| 2                     | OUT      | Blue/ Green | GND      | Black       |
| 3                     |          |             | OUT      | Blue/ Green |
| 4(E)                  | Shielded | Yellow      | Shielded | Yellow      |

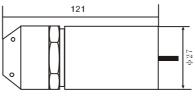
|        | $4 \sim 20 \text{mA}$                                           |
|--------|-----------------------------------------------------------------|
| 3-wire | 4 ~ 20mA, 0 ~ 20mA<br>0 ~ 5V, 0.5 ~ 4.5V, 1 ~ 5V, 0 ~ 10V (DC)  |
|        | $0 \sim 5V$ , $0.5 \sim 4.5V$ , $1 \sim 5V$ , $0 \sim 10V$ (DC) |

Viring: Red: Power supply+VCC; Black: signal output (voltage output, green/yellow); Black: GND




## Submersible Level Transmitter

## PS Series


## **User Manual**

ww.yotochn.net

### **Dimension Size**



Connected with the pipe



Submersible type

#### Introduction

#### Application:

This product is widely appied to accurate measurement and transmission for depth for liquid, oil, hydraulic fluid and viscous liquid. Such as follows:

- ◆ Pump and open water depth and level
- ◆ Water supply and sewage disposition system
- ◆ Water craft system
- Chemical industry and pharmaceuticals industry
- ◆ Engergy and water processing system
- ◆ Liquid level measurement and monitoring

#### Working principle:

With hydrostatic measuring principle:

When the liquid level transmitter is put into a measured depth of the liquid, the sensor surface pressure use this formula:  $=P = \rho \cdot g \cdot H + Po$ 

P: Pressure

ρ: Density of the measured liquid

g: The local acceleration of gravity (Debugging at 9. 8015)

Po: The atmospheric pressure on liquid

H: The depth of the liquid transmitter input

At the same time, through the introduction pressure into the positive pressure cavity of sensor by the conductivity stainless steel, then connect the atmospheric pressure Po on the surface with the negative pressure cavity of the sensor the sensor to offset Po on the back of sensor, so that pressure sensor measured  $P: \rho$ . g.H, obviously, through the measuring pressure P. we can get the depth of liquid.